
94-775/95-865 Lecture 9: 
Model Validation,  

Decision Trees/Forests

George Chen



Predict on data 
in orange

Train method on data in gray

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

0%

Compute 
prediction error

50%



Predict on data 
in orange

Train method on data in gray

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

0%50%

Compute 
prediction error

50%



Predict on data 
in orange

Train method on data in gray

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

0%50%0%

Compute 
prediction error

50%



Predict on data 
in orange

Train method on data in gray

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

0%50%0%0%
Average error: (0+0+50+0+50)/5 = 20%

Compute 
prediction error

50%



k-fold Cross Validation
Training 

data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute some sort of prediction score

3. Compute average prediction score across the folds

not the same k as in k-means or k-NN classification

“cross validation score”



Automatic Hyperparameter Selection

For each hyperparameter setting 𝜃 you are willing to try:

Compute 5-fold cross validation score using your algorithm 
with hyperparameters 𝜃

Use whichever 𝜃 has the best cross validation score

Suppose the prediction algorithm you’re using has 
hyperparameters 𝜃

Why 5?

People have found using 10 folds or 5 folds to work well in 
practice but it’s just empirical — there’s no deep reason



Test data 
point

Test data 
point

Test data 
point

Test data 
point

Test data 
point

Want to classify 
these points 

correctly

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training data

Example: future 
emails to classify 

as spam/ham
Example: Each data point is an email 
and we know whether it is spam/ham

Important: the errors from simple data 
splitting and cross-validation are 

estimates of the true error on test data!

Example: earlier, we got a cross validation 
score of 20% error

This is a guess for the error we will get on 
test data

This guess is not always accurate!



Cross-Validation Remarks
• k-fold cross-validation is a randomized procedure

• Suppose there are n data points and k folds

• If we are trying 10 different hyperparameter settings,  
how many models do we fit?

• How many training data are used to train each model 
during cross-validation?

• Re-running CV results in different cross-validation scores!

• If k = n, would re-running cross-validation result in different 
cross-validation scores? What about k = 2?

• If this number is similar in size to n, CV can overfit!

• Smaller # folds typically means faster training



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:
• Precision: among data points predicted to be “positive”, 

what fraction of these predictions is correct?
• Recall: among data points that are actually “positive”, what 

fraction of these points is predicted correctly as “positive”?  
(also called true positive rate)

• F1 score: 2 ⨉ precision ⨉ recall
precision + recall



Prediction and Model Validation

Demo



Decision Trees



Example Made-Up Data

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic



Example Decision Tree

Age > 40?

Weight > 200?Age > 30?

no yes

no yes no yes

diabeticnot 
diabetic

diabeticnot 
diabetic



Learning a Decision Tree

• Many ways: general approach actually looks a lot like 
divisive clustering but accounts for label information

• I’ll show one way (that nobody actually uses in practice) but 
it’s easy to explain



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

1. Pick a random feature 
(either age or weight)

2. Find threshold for which red and blue are as “separate as 
possible” (on one side, mostly red; on other side, mostly blue)

210

Red: diabetic 
Blue: not diabetic



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

Within each side, recurse until a 
termination criterion is reached!

Example termination criteria: ≥90% points within region has same label, 
number of points within region is <5

210
35

145 3929

Note: label within each region is majority vote

Red: diabetic 
Blue: not diabetic



Decision Tree Learned
Weight > 210?

Age > 35?Weight > 145?

no

diabeticnot 
diabetic

not 
diabetic

Age > 39?

Age > 29?

yes

no yes no yes

not 
diabetic

no yes

not diabetic
no yes

diabetic
For a new person with feature vector (age, weight), easy to predict!

Weight > 210?

Age > 35?Weight > 145?

Age > 39?

Age > 29?



Decision Forest for Classification

New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Final prediction: majority vote of the different trees’ predictions

Learn each tree 
separately using 

same training data

• Typically, a decision tree is learned with randomness 
(e.g., we randomly chose which feature to threshold)
➔ by re-running the same learning procedure, we can get 

different decision trees that make different predictions!
• For a more stable prediction, use many decision trees



Decision Forest for Classification
New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

• Random Forest: randomize training data used for each 
tree, randomly choose a few features to try to split on (and 
among these features, choose the best one to split on)

Randomly sample 
(with replacement) 

n points
n training 

data 
points

Randomizing training data 
this way is called bagging 

(bootstrap aggregating)



Back to the demo


