
94-775/95-865 Lecture 9: 
Model Validation,  

Decision Trees/Forests

George Chen
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k-fold Cross Validation
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1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute some sort of prediction score

3. Compute average prediction score across the folds

not the same k as in k-means or k-NN classification

“cross validation score”



Automatic Hyperparameter Selection

For each hyperparameter setting 𝜃 you are willing to try:

Compute 5-fold cross validation score using your algorithm 
with hyperparameters 𝜃

Use whichever 𝜃 has the best cross validation score

Suppose the prediction algorithm you’re using has 
hyperparameters 𝜃

Why 5?

People have found using 10 folds or 5 folds to work well in 
practice but it’s just empirical — there’s no deep reason
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Example: future 
emails to classify 

as spam/ham
Example: Each data point is an email 
and we know whether it is spam/ham

Important: the errors from simple data 
splitting and cross-validation are 

estimates of the true error on test data!

Example: earlier, we got a cross validation 
score of 20% error

This is a guess for the error we will get on 
test data

This guess is not always accurate!



Cross-Validation Remarks
• k-fold cross-validation is a randomized procedure

• Suppose there are n data points and k folds

• If we are trying 10 different hyperparameter settings,  
how many models do we fit?

• How many training data are used to train each model 
during cross-validation?

• Re-running CV results in different cross-validation scores!

• If k = n, would re-running cross-validation result in different 
cross-validation scores? What about k = 2?

• If this number is similar in size to n, CV can overfit!

• Smaller # folds typically means faster training



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:
• Precision: among data points predicted to be “positive”, 

what fraction of these predictions is correct?
• Recall: among data points that are actually “positive”, what 

fraction of these points is predicted correctly as “positive”?  
(also called true positive rate)

• F1 score: 2 ⨉ precision ⨉ recall
precision + recall



Prediction and Model Validation

Demo



Decision Trees



Example Made-Up Data

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic



Example Decision Tree

Age > 40?

Weight > 200?Age > 30?

no yes

no yes no yes

diabeticnot 
diabetic

diabeticnot 
diabetic



Learning a Decision Tree

• Many ways: general approach actually looks a lot like 
divisive clustering but accounts for label information

• I’ll show one way (that nobody actually uses in practice) but 
it’s easy to explain



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

1. Pick a random feature 
(either age or weight)

2. Find threshold for which red and blue are as “separate as 
possible” (on one side, mostly red; on other side, mostly blue)

210

Red: diabetic 
Blue: not diabetic



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

Within each side, recurse until a 
termination criterion is reached!

Example termination criteria: ≥90% points within region has same label, 
number of points within region is <5

210
35

145 3929

Note: label within each region is majority vote

Red: diabetic 
Blue: not diabetic



Decision Tree Learned
Weight > 210?

Age > 35?Weight > 145?

no

diabeticnot 
diabetic

not 
diabetic

Age > 39?

Age > 29?

yes

no yes no yes

not 
diabetic

no yes

not diabetic
no yes

diabetic
For a new person with feature vector (age, weight), easy to predict!

Weight > 210?

Age > 35?Weight > 145?

Age > 39?

Age > 29?



Decision Forest for Classification

New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Final prediction: majority vote of the different trees’ predictions

Learn each tree 
separately using 

same training data

• Typically, a decision tree is learned with randomness 
(e.g., we randomly chose which feature to threshold)
➔ by re-running the same learning procedure, we can get 

different decision trees that make different predictions!
• For a more stable prediction, use many decision trees



Decision Forest for Classification
New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

• Random Forest: randomize training data used for each 
tree, randomly choose a few features to try to split on (and 
among these features, choose the best one to split on)

Randomly sample 
(with replacement) 

n points
n training 

data 
points

Randomizing training data 
this way is called bagging 

(bootstrap aggregating)



Back to the demo


